---
title: "News"
output: rmarkdown::html_vignette
vignette: >
%\VignetteIndexEntry{News}
%\VignetteEngine{knitr::knitr}
%\VignetteEncoding{UTF-8}
---
## Development updates
### 2024
##### Bugfix
- 4.2-6-2 : add `MAXENT.partitions`, `MAXENT.kfolds`, `MAXENT.user.grp` and `MAXENT.tune.args` parameters in `bm_Tuning` function
- 4.2-6-1 : fixed path failure within species name (e.g. data format like `tif`)
#### 4.2-6 RFd and some tuning (2024-07-22)
- Warning ! Some options for `OptionsBigboss` have been modified (concerns only ANN, CTA and RF models)
- Some changes for the tuning ranges.
- Add `RFd` : Random Forest with a down-sampling method.
- Add `seed.val` for `bm_pseudoAbsences` and `BIOMOD_FormatingData`.
- Add `fact.aggr` argument for pseudo-absences selection with the random and disk methods. It allows to reduce the resolution of the environment.
- Possibility to give the same options to all datasets with _"for_all_datasets"_ in `bm_ModelingOptions`.
##### Bugfix
- 4.2-5-2 :
+ fixed `BIOMOD_EnsembleModeling` when multiple PA datasets (`obs` and `fit` not matching when calling `bm_FindOptimStat`)
+ always keep same order for variable names for `new.env` in `BIOMOD_Projection` and `BIOMOD_EnsembleForecasting`
- 4.2-5-1 :
+ removed `tests/` folder (unused)
+ fixed check for variable names for `new.env` in `BIOMOD_Projection` and `BIOMOD_EnsembleForecasting`
+ fixed connection issue with `MAXENT` tuning
#### 4.2-5 Modeling options and Tuning (2024-05-02)
- Submitted on CRAN
##### Major Changes
- Add print function for `BIOMOD.options.dataset` and `BIOMOD.models.options` classes
- Add `GAM.binary.gam.gam` and `GAM.binary.mgcv.bam` in `OptionsBigboss` dataset
- Add checks for `obs` and `fit` parameters in `bm_FindOptimStat`
- In `bm_Tuning` function :
+ add `MAXENT.algorithm` and `MAXENT.parallel` parameters
+ be sure to update default tuning parameters if not all provided
+ fix tuning for `XGBOOST` and `SRE`
+ fix optimization of formula
+ switch from `gamSpline` to `gamLoess` method to tune `GAM.gam.gam` model, and add `GAM.span` and `GAM.degree` parameters
- Fix multiple cases when using different settings of PA / cross-validation / modeling options through all the different secundary functions and `BIOMOD_Modeling`
##### Minor Changes
- Add vignette for cross-validation (_to prepare your own calibration / validation datasets_)
- Add vignette for modeling options (_to help you navigate through the new way of parameterizing single models_)
- Update examples and documentation
##### Bugfix
- Add `try` and error message in call for models in `bm_RunModelsLoop`
- Check for predictions `>1000`
- Correct `BIOMOD_EnsembleForecasting` when using `data.frame`
- Correct predictions for `EMci` (removing round)
### 2023
#### 4.2-5 Modeling options and Tuning (2023-09-12)
##### Major Changes
- Reformat modeling options, how they are created and how they are given to models :
+ Create `BIOMOD.options.default` and `BIOMOD.options.dataset` classes, retrieving default parameters and values with `formalArgs` function
+ Modeling options can now be different for PA x cross-validation datasets x models
+ Add `ModelsTable` and `OptionsBigboss` datasets containing single models informations and pre-defined modeling options
+ Move `BIOMOD_ModelingOptions` to `bm_ModelingOptions`
+ Call `bm_ModelingOptions` directly in `BIOMOD_Modeling` and add related `OPT.[...]` parameters
- Move `BIOMOD_Tuning` to `bm_Tuning` and adapt it to match with new modeling options
- Modify the call to single models in `bm_RunModelsLoop` in a more generalized way dealing with new modeling options
##### Minor Changes
- Remove `BIOMOD_PresenceOnly` function and add `BOYCE` and `MPA` indices into `bm_FindOptimStat` function
- Save ensemble projections with `FLT4S` datatype only when EMcv is activated, otherwise use `INT2S`
- Add vignette for data preparation (_questions you should ask yourself before modeling_)
- Correct getters (variable importance, built models)
- Update examples and documentation
##### Bugfix
- 4.2-4-10 : fixed `wrap` applied to a `data.frame` in `BIOMOD_Projection`
- 4.2-4-9 : fixed `predict` method for `RF` with `do.classif = FALSE`
- 4.2-4-8 : improved tests in `bm_PlotEvalMean`
- 4.2-4-7 : fixed `do.classif` ignored in `BIOMOD_ModelingOptions`
- 4.2-4-6 : fixed parallelization in `BIOMOD_Projection`
- 4.2-4-5 : fixed summary method for `BIOMOD.formated.data` and `BIOMOD.formated.data.PA`
- 4.2-4-4 : fixed `bm_PlotResponseCurves` for ensemble models merged by algo (for Maxent)
- 4.2-4-3 :
+ added `point.size` argument to `plot.BIOMOD.Formated.data`
+ added `maxcell` argument to `plot.BIOMOD.projected.out`
- 4.2-4-2 : set XGBOOST `verbose = 0` (from `verbose = 1`)
- 4.2-4-1 : fixed `BIOMOD_FormatingData` checks for `resp.xy`
#### 4.2-4 XGBOOST (2023-06-21)
##### Major Changes
* added XGBOOST as a possible algorithm in `BIOMOD_Modeling`
##### Minor Changes
* changed `CV.do.full.models` default value to `FALSE`
##### Bugfix
- 4.2-3-5 :
* fixed some more issues related to categorical variables badly interacting with missing values. Projection and Ensemble Forecasting are now only calculated on cells without any missing values.
* removed obsolete code for SRE pseudo absences sampling with categorical variables, as SRE do not work with categorical variables
* added internal function to get mask of data `.get_data_mask`
- 4.2-3-4 : fixed bug in `BIOMOD_Modeling` when using `sampsize` as a vector. argument `strata` was badly formatted
- 4.2-3-3 : fixed bug in `BIOMOD_EnsembleModeling` for additional projection with only one environmental variables
- 4.2-3-2 : fixed bugs in `BIOMOD_EnsembleForecasting` when several projection are running simultaneously and using the same temporary directory
- 4.2-3-1 : fixed bugs in `bm_CrossValidation` with `user.defined` tables badly formatted (TRUE/FALSE for data not in the given PA dataset are now properly transformed into NA)
#### 4.2-3 Cross-Validation and Pseudo-Absences (2023-05-09)
##### Major Changes
* Improved pseudo-absence management: it is now possible to have pseudo-absence dataset of different size and algorithm can be setup to run on different pseudo-absence dataset (with `models.pa` argument in `BIOMOD_Modeling`).
* Rework and harmonization of cross-validation function. `BIOMOD_CrossValidation` have been renamed `bm_CrossValidation` and cross-validation with k-fold, stratified and environmental strategy now work properly with pseudo-absence dataset. All cross-validation strategy can now be called directly through `BIOMOD_Modeling`.
##### Minor Changes
* improved Documentation (`get_evaluations`, `BIOMOD_EnsembleModeling`, `bm_RunModelsLoop`, `bm_RunModel`)
* updated website tutorial to use current biomod2 version
* removed unused parameter `save.output`. output are now automatically saved.
* improved management of categorical raster for both `terra` and `raster`
* `CV.perc` (formerly `data.split.perc`) now uses a 0-1 range (instead of 0-100)
* deprecated arguments for `BIOMOD_EnsembleModeling` now gives an error.
* added argument `metric.select.dataset` to `BIOMOD_EnsembleModeling` to choose the dataset which evaluation metric should be used to filter and/or weigh the ensemble models. Default value is now 'validation' instead of 'evaluation'.
* added argument `na.rm` to `BIOMOD_EnsembleModeling` to harmonize the management of `NA` among individual model predictions.
##### Bugfix
* validation metric calculation now properly use the calibration threshold (i.e a threshold optimized on calibration data instead of validation data). This can lead to less optimistic threshold-dependent validation metric.
* fixed SRE projection assuming the same variables ordering in calibration and projection data
* ensemble model can again be calculated over models without validation
* correct print for multiple values in `RF$sampsize` parameter in `BIOMOD_ModelingOptions`
* fixed layer name in `BIOMOD_Projection` and `BIOMOD_EnsembleForecasting` when `terraOption(todisk = TRUE)` is activated (for large or numerous raster).
* fixed Ensemble Models based on models without cross-validation ("allRun")
* model is now robust to using `data.table` object (that are converted into standard `data.frame`).
* fixed projection raster name when using `do.stack = FALSE` and `resp.name` with `.` inside.
* fixed using user-defined pseudo-absences along with `filter.raster = TRUE` in `bm_PseudoAbsence`.
* fixed weights calculation when using only one pseudo-absence dataset
* fixed summary and show method for `BIOMOD.formated.data.PA`
##### Internal
* add internal function `get_species_data` and `get_eval_data`
* removed `.BIOMOD_Modeling.prepare.data`
* reorganised `bm_RunModelsLoop` to do the PA loop within the function
* `calib.lines` and `eval.lines` variable names are standardised (no more `calibLines` or `eval_lines`)
* removed dependency to `data.table` (removed use of `rbindlist`)
* added `.get_env_class` to reduce code redundancy
* renamed `categorical_stack_to_terra` into `.categorical_stack_to_terra`
* dispatched some of `BIOMOD_FormatingData` checks into `bm_PseudoAbsences`
#### 4.2-2 Improvement patch (2023-01-13)
##### Major Changes
* `'.tif'` is available as an output format for raster projection
* `'.tif'` is the new default output format for raster projection
* Improved `plot` and `summary` methods for `BIOMOD_FormatingData` output. These method now support the use of `calib.lines` to explore how the cross-validation dataset are structured.
* Updated `plot` methods for `BIOMOD.projection.out` objects so that it uses `ggplot2` for nicer plots.
* Binary and Filtered transformation are now properly stored in `BIOMOD.projection.out` objects. They can be loaded from the disk with `get_predictions` or represented through `BIOMOD.projection.out` plot method.
* `get_predictions` now return a proper `data.frame` (unless projection on spatial data) with many additional information available. Old behavior can be reproduced by using `get_predictions(x, model.as.col = TRUE)`.
* `get_evaluations` now return a cleaner `data.frame` with more consistent information available.
##### Minor Changes
* Simplified maxent model names: 'MAXENT.Phillips' -> 'MAXENT' (based on `maxent.jar`); 'MAXENT.Phillips.2' -> 'MAXNET' (based on `maxnet` package).
* `BIOMOD_FormatingData` now gives warning when several input data points are located in the same raster cells
* Added options `filter.raster` in `BIOMOD_FormatingData` to filter data points so that none are located in the same raster cells.
* `BIOMOD_EnsembleModeling` now have an argument `em.algo` to select the ensemble algorithm to be computed. Separate arguments are now deprecated (`prob.mean`, `prob.median`, `prob.cv`, `prob.ci`, `committee.averaging`, `prob.mean.weight`). Building all possible ensemble models can now be done with `em.algo = c('EMmean','EMmedian','EMcv','EMci','EMca','EMwmean')`.
* Some possible values for `em.by` have slightly changed: 'PA_dataset' -> 'PA', 'PA_dataset+repet' -> 'PA+run' and 'PA_dataset+algo' -> 'PA+algo'
* Added an appropriate message when all models fail for `BIOMOD_Modeling` and `BIOMOD_EnsembleModeling`.
##### Bugfix
* Fixed `MAXENT.Phillips.2` and single variable models.
* Fixed ensemble models when several filtering metrics were asked and some combination of ensemble/metrics had no models
* Bugfix for projection for ensemble models to ensure that the proper set of models was selected
* Bugfix for `BIOMOD_CrossValidation` for block-stratified sampling
* Bugfix for `BIOMOD_CrossValidation` for pseudo-absences
##### Internal Changes
* Array have disappeared from most internal functions
* Removed `rasterVis` from `Suggests`
* Added `tidyterra` and `ggtext` to `Suggests`
* Added checks to `get_evaluation` when models have no evaluations.
### 2022
#### 4.2-1 Bugfix patch
##### Major Changes
* Package `sp` is back into `Imports` due to the need to use `sp::read.asciigrid`
* Added control for `terra` version number (>= 1.6-33) as `terra` 1.6-41 was released on CRAN.
* With `do.stack = TRUE`, only stacked projection are now saved to the disk.
##### Minor Changes
* Added `initial_heap_size` and `max_heap_size` in `MAXENT.Phillips` modeling options
* Improved projection efficiency for raster with `MAXENT.Phillips`.
##### Bugfix
* Fixed `MAXENT.Phillips` predict method for large dataset (require `sp::read.asciigrid`).
* Fixed ensemble models using a single PA dataset with `em.by = 'all'` or `'algo'`.
* Models using repetition dataset cannot be merged anymore with models using Full dataset in `BIOMOD_EnsembleModeling`.
* Fixed error in `BIOMOD_EnsembleForecasting` when a single evaluation metric was available and binary/filtered transformation were asked for.
* Bugfix for plot method for `BIOMOD.formated.data.PA` object.
* Fixed `MAXENT.Phillips` for Windows.
* Fixed using `do.stack = FALSE` with `BIOMOD_Projection`.
* Fixed `EMcv` ensemble modeling for `data.frame` by removing dependency to `raster::cv`.
* Fixed `free` method with `PackedSpatRaster`
* Fixed `BIOMOD_FormatingData` in case where no coordinates are given
##### Internal
* Updated github workflow : removed obsolete ubuntu 18.04 ; added test on r-devel ; added cache for R packages.
* Updated `MAXENT.Phillips` `predict2` method for `SpatRaster` so that it saves environmental data as `.asc` and do not use the `data.frame` method.
* Fixed some automatic boolean conversion
* Cleaned up `BIOMOD.formated.data@data.mask` slot. `data.mask` can now be safely saved and re-opened ; `data.mask` can now store a different extent for evaluation dataset
#### 4.2-0 Terra Update
##### Major Changes
* Package now rely only on `terra` (`> 1.6.33`) and do not automatically import `raster` and `sp`.
* Moved `raster` and `sp` package into `SUGGESTS` rather than `DEPENDS`.
* `raster` and `sp` input data type are still supported.
* Package dataset now are now documented and loaded with `data()` .
##### Minor Changes
* `bm_BinaryTransformation` now always returns `0`/`1` and never `TRUE`/`FALSE`
* Added a check to `bm_PlotResponseCurves` for `new.env` possible data types.
* `BIOMOD_Projection` and `BIOMOD_EnsembleForecasting` now properly support matrix as `new.env`
* `get_prediction` on `biomod.projection.out` generated from `BIOMOD_Projection` based on `SpatRaster` with arg `as.data.frame = TRUE` are now possible.
* `bm_BinaryTransformation` now return same type of object as its input
* Improved communication for `BIOMOD_RangeSize`, indicating how comparison are done depending on the number of models in current vs future.
* Added argument check for `BIOMOD_CrossValidation`
##### Bugfix
* MAXENT.Phillips models can now properly fail
* bugfix for `bm_BinaryTransformation` with `data.frame`/`matrix` and `do.filtering = TRUE`
* Removed obsolete warning about CTA and categorical variables when using raster
* `bm_PlotResponseCurves` now work with factors in univariate representation
* `bm_PlotResponseCurves` properly handles `SpatRaster` and `Raster` as `new.env`
* Bugfix for predictions with `MAXENT.Phillips` and a single environmental variable
* Bugfix for `BIOMOD_EnsembleForecasting` so that it properly accounts for `new.env.xy` when projecting on `matrix` or `data.frame`.
* `BIOMOD_EnsembleModeling` now works when called for a single ensemble model
* Improved argument check for `BIOMOD_RangeSize`. Comparisons with non-binary values throw errors.
* bugfix for `BIOMOD_RangeSize` and data.frame method
* `BIOMOD_RangeSize` `data.frame` method now handles 1 current vs n future projection
* bugfix for `BIOMOD_PresenceOnly` that can now work when evaluation data are provided
* bugfix for `BIOMOD_PresenceOnly` that can now work when only the EM have been provided
* expanded support for `BIOMOD_PresenceOnly` to `SpatRaster` and `SpatVector`.
* `build_clamping_mask` now support categorical variables
* fixed ensemble model EMcv based on a single environmental variable
##### Internal Changes
* New internal function `.categorical2numeric` to transform categorical variables into numeric within a `data.frame`.
* New internal function `.get_categorical_names` to retrieve categorical variable names from a `data.frame`.
* Split `load_stored_object` method into a method for `BIOMOD.stored.SpatRaster` and a method for all other `BIOMOD.stored.data`.
* `BIOMOD.stored.SpatRaster` stores `PackedSpatraster` and not `SpatRaster`.
* New internal function `.CompteurSp` based on old function CompteurSp that was defined within a function.
* Removed obsolete function `check_data_range()`.
#### 4.1-3
##### Bugfix
* Ensemble models that fails (e.g. EMcv with only one models) will not crash the full ensemble run. Instead a warning is generally displayed at the beginning and the resulting object will list failed models.
* Fixed CTA raster prediction for categorical variables.
* Fixed binary transformation in `BIOMOD_EnsembleForecasting`.
#### Internal Changes
* New internal function .get_kept_models to generate list of models kept by ensemble modeling depending on `metric.select`.
* Improved checks for `BIOMOD_EnsembleModeling` to generate warnings when ensemble models are expected to be run with <= 1 models.
* Repaired support for cross-validation table given as `data.frame` instead of `matrix`.
#### 4.1-2 (2022-09-29)
##### Major changes
* `dir.name` can now be provided as project argument so that results may be saved in a custom folder.
* `predict` with `CTA` algorithm and categorical variables on raster is now possible.
* Changed evaluation for EM models merging PA datasets (`em.by = "algo"` or `em.by = "all"`) so that evaluation uses the union of PA data sets instead of the whole environmental space supplied.
##### Minor changes
* Individual EM models projected as raster are now saved with `INT2S` data format when `on_0_1000` is set to `TRUE`.
* Homogenize the use of load functions (*use* `get_[...]`*,* `load_stored_object` *and* `BIOMOD_LoadModels`*, instead of* `get(load(...))`) and the workflow within `get_[...]` functions (*use* `load_stored_object` *and similar arguments such as* `as.data.frame`*,* `full.name`*, ...*).
* Adapting predict workflow to properly use S4 class.
* Homogenize `BIOMOD.ensemble.models.out` and `BIOMOD.models.out` objects
* Add slots in `BIOMOD.ensemble.models.out` object for evaluations, variables importance and predictions.
* Moved `.Models.save.objects` in `BIOMOD_modeling` to `.fill_BIOMOD.models.out` in `biomod2_internal.R`.
* Save slots within `BIOMOD.ensemble.models.out` and use `load_stored_object` to directly get them within `get_[...]` functions.
##### Bug Fix
* Validation data can now be properly combined with Pseudo-Absence in `BIOMOD_FormatingData`, instead of throwing an error linked to `data.mask`.
* Argument `on_0_1000` can now be passed without errors so that projection may either be on a range from 0 to 1 or from 0 to 1000. The latter option being more effective memory-wise.
* Completed argument check for function `BIOMOD_EnsembleModeling` so that `em.by` can not be of `length > 1`.
* Corrected function `.get_models_assembling` so that it did not confound `MAXENT.Phillips2` with `MAXENT.Phillips` when grouping models by algorithm in `BIOMOD_EnsembleModeling`.
* `get_predictions` method for `BIOMOD.ensemble.models.out` now accepts an `evaluation` arg. Evaluation values, variables' importance and Calibration/Evaluation predictions for ensemble models are now properly saved by `BIOMOD_EnsembleModeling()`.
* Evaluation metrics are no longer calculated for models `prob.ci.inf` et `prob.ci.sup`.
* Package now properly pass R CMD check.
* `BIOMOD_PresenceOnly` now properly manage `NA`.
* Corrected `bm_PlotResponseCurves` to only plot `show.variables`.
* `get_predictions.BIOMOD.projection.out` now properly works when asked for a subset of model.
##### Miscellaneous
* Using models with a single predictor requires updating `gbm` package to its development version at rpatin/gbm can be used. (see issue **)
#### 4.1-1 (2022-08-30)
* add `do.progress` parameter (to render or not progress bar) and `dir.name` parameter in `BIOMOD_FormatingData` and `biomod2` objects (**Mathieu B. request**)
* fix `BIOMOD_PresenceOnly` function by removing `ecospat` dependency
#### 4.1 (2022-07-12)
* fix bugs following major release 4.0
#### 4.0 (2022-03-01)
* MAJOR RELEASE
* clean all functions, reorganize files, remove old / unused functions
* standardize function names and parameter names
* update `roxygen2` documentation for all functions, including examples
* create github website to host documentation, examples, vignettes, news
### 2021
#### 3.5-3 (2021-11-02)
* clean BIOMOD classes definitions and functions (`biomod2_classes` files)
* clean `BIOMOD_FormatingData` function
* clean `BIOMOD_ModelingOptions` function
* fix `BIOMOD_FormatingData` : test class condition only a first element (to deal with `matrix` / `array` objects)
* fix `BIOMOD_EnsembleForecasting` for `EMcv` model when only one single model was kept
#### 3.5-2 (2021-10-18)
* fix `BIOMOD_PresenceOnly` function (previously `BIOMOD_presenceonly`)
* fix `BIOMOD_CrossValidation` function (previously `BIOMOD_cv`)
* fix internal function to find `MinMax` values, when factor included : should get clamping mask to work
### 2018-2019
#### 3.3-20 (2019-03-05)
* Remove maxent Tsurukoa because not maintained anymore (required by CRAN team)
#### 3.3-18 (2018-07-04)
* fix the gbm multicore issue
#### 3.3-17 (2018-04-23)
* correct the single presence pseudo-absences generation bug (**Matthias G.**)
### 2016
#### 3.3-6 (2016-01-14)
* add `get_predictions` function for ensemble models
#### 3.3-5 (2016-01-04)
* MARS models are now computed throw `earth` package (was `mda` in previous versions)
* MARS now supports factorial explanatory variables
* MARS now supports `formula`
### 2015
#### 3.3-4 (2015-11-04)
* update `BIOMOD_tuning` function (**Frank B.**)
#### 3.3-3 (2015-10-27)
* force sampling of each level of factorial variables
* add `betamultiplier` parameter to tune MAXENT.Phillips (**Frank B. request**)
#### 3.3-00 (2015-10-05)
* MAJOR RELEASE
* optimize the memory consumption of projections and ensemble projections procedure
* add the possibility to run `MAXENT.Phillips` with proper background data
* classical version of `MAXENT` has been renamed `MAXENT.Phillips`
* add a new version of MAXENT `MAXENT.Tsuruoka`
#### 3.2-00 (2015-07-28)
* add 3 new functions in `biomod2` (**Frank B. contribution**)
* `BIOMOD_cv` to control models cross validation procedure
* `BIOMOD_presenceonly` to evaluate biomod models using boyce and mpa indices
* `BIOMOD_tuning` to automatically tune `BIOMOD_ModelingOptions` parameters
### 2014
#### 3.1-59 (2014-10-23)
* add model evaluation scores plotting function
* dependence to `ggplot2`
#### 3.1-53 (2014-08-06)
* new ensemble models names to be more coherent with formal models names
#### 3.1-44 (2014-05-20)
* possibility to use user defined function to influence the way models are weighted in weighted mean ensemble models (**thanks to Frank B.**)
#### 3.1-43 (2014-05-20)
* add of `as.data.frame` argument for `get_evaluations()` function to enable formal and ensemble models evaluation scores merging
#### 3.1-42 (2014-05-19)
* enable ensemble forecasting models selection (**thanks to Robin E.**)
### 2013
#### 3.1-17 (2013-10-23)
* add parameter to control amount of memory reserved for `MAXENT` calculations (via java) (**thanks to Burke G.**)
* optimization of memory consumption in models projections when `do.stack` argument is set to `FALSE`
* binary and filtering projections output re-activated
#### 3.1-1 (2013-09-04)
* limitation of package dependencies
* fairely definition of package namespace
* add functions to update `biomod2` objects from a version to the current one
#### 3.0.2 (2013-07-23)
* new functions to evaluate a-posteriori models quality
* remove weights for models scaling and set it `FALSE` by default
#### 3.0.0 (2013-07-01)
* MAJOR RELEASES
* ensemble models are now `biomod2` models objects (should be predicted, evaluated, and you can do variables importance) the same way than all formal `biomod2` models
* possibility to produce ensemble models response plot
* ensemble forecasting output is now a `biomod2_projection` object: should be plotted...
* ensemble forecasting is now doable without doing previous projections (even if it is still advised). Can work with raw explanatory variables
* getter and setter function have been renamed
* new `variable_importance` function
* ...
#### 2.1.37 (2013-06-12)
* change (temporally?) gam default package from `mgcv` to `gam` to deal with memory (cache) over-consuming (**thanks to Burke G.**)
* update of `response.plot2` function (optimization + deal with factorial variables)
#### 2.1.32 (2013-05-30)
* weights for user defined pseudo-absences are now supported (**thanks to Rui F.**)
* deal with unknown factors predictions (**thanks to Denis M.**)
#### 2.1.13 (2013-03-06)
* Add `ProbDensFunc()` function to package to produce nice plots that show inter-models variability
#### 2.1.12 (2013-03-04)
* add `rasterVis` dependency for nicer `biomod2` plots
* `PA.dist.min` and `PA.dist.max` are now defined in meters when you work with unprojected rasters in disk pseudo absences selection
#### 2.1.9 (2013-02-28)
* possibility to indicate manually which data should be used for calibration (resp. for validation) of models within `BIOMOD_Modeling`
#### 2.1.9 (2013-02-27)
* one var modeling supported (**thanks Anne O.**)
* new options for response curves plotting (`col`, `lty`, `data_species`...)
#### 2.1.8 (2013-02-25)
* response plot supports now formal models
#### 2.1.0 (2013-02-21)
* MAJOR RELEASE
* CRAN SUBMISION
* add of a `modeling.id` arg (`BIOMOD_Modeling`) for prevent from no wanted models overwriting and facilitate models tests and comparisons (**thanks Frank B.**)
* change of `biomod2` dataset
* vignettes and help files update (**thanks Sam P. & Signe N.**)
* save link between modeling and projection objects
* add `pROC` package dependency
* add a modeling cleaner that remove modeling objects from both memory and hard drive: `RemoveProperly()`
#### 2.0.11 (2013-02-18)
* possibility to consider a user.defined pseudo absences selection (**thanks to Signe N.**)
* possibility to switch off stepwise glm selection (***thanks Frank B.**)
#### 2.0.9 (2013-02-15)
* automatic save on hard drive of `BIOMOD_Projection` outputs
#### 2.0.8 (2013-02-14)
* `BIOMOD_LoadModels` supports multiple models input
* deal with `NA` in evaluation table issue (***thanks Frank B.**)
#### 2.0.7 (2013-02-12)
* bug on weights corrected (**thanks to Lugi M.**)
#### 2.0.3 (2013-01-18)
* deal with `MAXENT` categorical variables and categorical raster input
#### 2.0.0 (2013-01-17)
* MAJOR RELEASE
* CRAN SUBMISION
* models built within `biomod2` are now defined as "biomod2 models objects" (own scaling models, own predict function, ...)
* full paths are replaced by relative paths to favor portability
* harmonization of names of objects that are saved on hard drive (more coherence between functions)
* possibility to save projections directly in raster format (`.grd` or `.img`)
### Year 0
#### 1.x.x
* development phase